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Atomistic simulation of dislocation core structure
and dynamics in Fe–Ni–Cr–N austenite

M. GRUJICIC
Center for Advanced Manufacturing, Department of Mechanical Engineering,
Clemson University, Clemson, SC 29634, USA

Atomistic computer simulations based on the use of the conjugate gradient and molecular

dynamics methods were employed to determine the core structure and dynamics of the

a/2S1 0 0T edge and screw dislocations in Fe—Ni—Cr and Fe—Ni—Cr—N austenites. The

embedded-atom method was used to quantify the interactions between iron, nickel,

chromium and nitrogen atoms. In Fe—Ni—Cr austenite, both the edge and screw dislocations

dissociate along one of the M1 1 1N planes, forming stacking fault ribbons. The ribbon widths

were found to be comparable to their values calculated using the continuum theory. The

analysis of dislocation dynamics showed that the phonon drag interferes more with the

motion of screw dislocations, reducing their mobility in comparison with the mobility of

edge dislocations. In Fe—Ni—Cr—N austenite, the structure of the dislocation core of the

a/2S1 1 0T edge dislocation does not seem to be significantly affected by the presence of

nitrogen. In sharp contrast, the core structure of the dissociated a/2S1 1 0T screw dislocation

undergoes a major change, resulting in spreading of the core on to two or more non-parallel

planes. As a result, mobility of the screw dislocations is substantially lower than that of the

edge dislocations. This finding is consistent with the experimental observations that the

dislocations are predominantly of the screw character in Fe—Ni—Cr—N austenite.
1. Introduction
The addition of nitrogen into Fe—Ni—Cr austenite is
generally found to cause the dislocations to become
predominantly screw type [1, 2]. In addition,
Fe—Ni—Cr—N alloys show an ‘‘unusually’’ high tem-
perature dependence of flow stress at lower temper-
atures [3]. These characteristics, the predominance of
screw dislocations and the rapid increase in flow stress
with decreasing temperature, are typically found in
b c c alloys, not in f c c alloys like austenite (e.g. [4]).
The behaviour of b c c alloys has been rationalized in
terms of lower mobility of the screw dislocations,
associated with a non-planar sessile configuration of
their core [4—6]. Recently, we reported that the pres-
ence of nitrogen can cause similar non-planar dis-
sociation of the a/2S1 1 0T screw dislocations in
Fe—Ni—Cr austenite [7]. In the present work, the core
structure and relative mobility of the a/2S11 0T edge
and screw dislocation in Fe—Ni—Cr and Fe—Ni—Cr—N
austenites were analysed using atomistic simulations.
The simulations of the dislocation core structure were
done at 0 K using the conjugate gradient method [8]
to minimize the potential energy of the crystal with
respect to the atoms positions. Dislocation dynamics
was studied using molecular dynamics simulations.

2. Embedded-atom method
The embedded-atom method (EAM) was originally

developed by Daw and Baskes [9, 10], and its theory

0022—2461 ( 1997 Chapman & Hall
and application have recently been reviewed [11]. In
the EAM the potential energy, E
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, of a system con-

taining nitrogen atoms is defined as
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The electron density, q
i
, at the location of atom i is

given by a linear superposition of spherically averaged
atomic densities of all other atoms in the system, q!
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as follows
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The atomic densities are generally determined using
the Hartree—Fock theory and double-zeta electron
density functions as tabulated by Clementi and Roetti
[12].
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where Z
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are, respectively, the effective charge

functions for atoms i and j which are positive quan-
tities and which decrease monotonically with the

interatomic distance r

ij
.
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Using experimental data for the cubic elastic con-
stants, the cohesion energies, the equilibrium lattice
parameters, and the heats of mixing in the limit of
infinite dilution, Grujicic and Zhou [11] recently
determined the F

i
(q
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), q (r
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) and /

i j
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) functions

for iron, nickel, chromium and nitrogen in the
Fe—Ni—Cr—N austenitic steels. These functions have
been utilized in the present paper to quantify the
atomic interactions within the computational crystal
used in the atomistic simulations.

Our preliminary results showed that the structure
of the dislocation core in the Fe—Ni—Cr austenite is
somewhat affected by the local chemical composition
and the atomic order. In order to separate this effect
from the effect of nitrogen on the dislocation core
structure, we applied the effective atom method in
which the metallic sublattice in the austenite is re-
garded as if it contains identical (effective) metallic
atoms [11, 13]. The embedding energy and the elec-
tron density functions for the effective (metallic) atoms
are defined as a weighted average of the corresponding
functions for iron, nickel and chromium
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The effective pair potential function is defined as
a weighted average of the pair potentials between iron,
nickel and chromium and their ‘‘average’’ neighbours.
That is
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Substitution of Equation 7 into Equation 6 yields
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where y is the site fraction of iron, nickel or chromium
on the metallic sublattice.

Based on Equations 3 and 8, the effective charge
function for the effective atoms is
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Using Equations 4, 5, 8 and 9 and the F
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mium from our previous work [11], the effective
functions F
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mined.
To avoid surface effects and simulate the behaviour

of an infinite dislocation, periodic boundary condi-
tions were applied in the direction parallel to the
dislocation line. When nitrogen is introduced into the
computational crystal to study its effect on the dislo-
cation structure, due to periodic boundary conditions,
nitrogen atoms form an infinite row of atoms parallel

to the dislocation line. Under such circumstances,

1750
in order to obtain a realistic line concentration of
nitrogen, the periodic length of the computational
crystal in the dislocation line direction would have
to be increased significantly making the size of
the computational crystal prohibitively large and the
computation impractical. The maximum size of the
computational crystal studied in the present work
allowed us to place nitrogen into every other inter-
stitial site along the direction of the dislocation line. It
must be noted that because this resulted in an un-
physically large concentration of nitrogen atoms, the
results to be obtained could be used only for a quali-
tative analysis of the effect of nitrogen.

3. Computational procedure
3.1. Computational crystal and dislocation

generation
3.1.1. Edge dislocation
A rectangular computational crystal containing ini-
tially 5148 atomic sites arranged on two interpenetrat-
ing f c c lattices was used to study the core structure
and mobility of the edge a/2S1 1 0T dislocation. The
orientation and the size of the crystal are given in
Fig. 1. The edge sizes are expressed in terms of the
number of non-equivalent (21 2 0), (1 1 1) and (2 2 41 )
planes in either of the two sublattices. Initially, equiva-
lent (metallic) atoms were placed onto one of the f c c
lattices and the potential energy of the crystal mini-
mized subject to flexible periodic boundary conditions
along all three principal directions. This procedure
yielded the equilibrium lattice parameter 0.353 41 nm
at 0 K. All the subsequent calculations were done
under the condition that the lattice parameter remains
fixed.

To generate an a/2[11 1 0] edge dislocation, two
neighbouring [21 2 0] halfplanes were removed from
the bottom half of the crystal. This procedure reduced
the total number of atoms to 5172. To help the result-
ing edge dislocation dissociate into two Shockley par-
tial dislocations, one of the adjacent (21 2 0) halfplanes
was shifted into the position of one of the ‘‘missing’’
halfplanes, Fig. 1. This resulted in a one-plane separ-
ation of the two missing (or extra) (2 2 0) planes. Min-
imization of the potential energy of this configuration,
causes further separation of the two extra halfplanes,
i.e. further separation of the two Shockley partial

Figure 1 Geometry and size of the computational crystal used in
the analysis of the a/2[11 1 0] edge dislocation. Two (21 2 0) halfplanes
indicated in the figure were removed in order to generate the edge

dislocation.



dislocations. All the calculations of the core structure
and dynamics were done under the periodic boundary
condition in the [1 1 21 ] and [11 1 0] directions, and the
free-surface boundary condition in the [1 1 1] direc-
tions and hence pertain to the case of a single infinitely
long edge dislocation.

3.1.2. Screw dislocation
The geometry and the size of the computational crys-
tal used in the analysis of the a/2S11 0T screw disloca-
tion is shown in Fig. 2. The block contained 5320
atomic sites arranged on two interpenetrating f c c
lattices. The size of the computational crystal is again
given in terms of the number of non-equivalent (21 2 4),
(1 11 1) and (2 2 0) planes. Using the aforementioned
procedure, the equilibrium lattice parameter at 0 K
was obtained again. As expected, the same value for
the lattice parameter (a"0.354 nm) was obtained for
both computational crystals. The lattice parameter
was fixed at this value in all the subsequent calcu-
lations.

To generate a screw dislocation along the [1 1 0]
direction, atoms were displaced from their perfect
positions (x, y) in the [1 1 0] direction by a distance w,
according to the formula

w"

b
2p

arc tan
y!y

0
x!x

0

(10)

where b is the magnitude of the Burgers vector, (x
0
, y

0
)

the coordinates of the dislocation centre. In our pre-
vious work [7] we explored the effect of various elastic
centres of the dislocation on its energy and found that
the dislocation centre marked * in Fig. 6a (see later) is
associated with the lowest energy. Hence only this
screw dislocation configuration was analysed in the
present paper. As discussed elsewhere [7], to initiate
dissociation of the unit a/2[1 1 0] screw dislocation,
the flexible, periodic boundary conditions were ini-
tially applied along all three principal directions in
Fig. 2, and the potential energy of the crystal mini-
mized. After the dislocation has dissociated, the free
surface boundary conditions were next applied along
the two directions ([11 1 2] and [1 11 1]) normal to the
dislocation line and the energy minimization proced-
ure repeated. This yielded a minor change in the
energy and no apparent change in the stacking fault
ribbon width. All the subsequent calculations were

Figure 2 Geometry and size of the computational crystal used in

the analysis of the a/2[1 1 0] screw dislocation.
carried out under the periodic boundary condition
in the [1 1 0] and [11 1 2] directions and the free
surface conditions in the [1 11 1] direction and thus
pertain to the case of a single, infinitely long screw
dislocation.

3.2. Analysis of the dislocation core
3.2.1. Edge dislocation
According to Fig. 1, the line direction of the a/2[11 1 0]
edge dislocation is [1 1 21 ]. To analyse the dislocation
core it is convenient to use a projection of the atoms
on the plane normal to the dislocation line, the (1 1 21 )
plane in this case. A (1 1 2) projection of the atoms in
the f c c structure is given in Fig. 3a. It should be noted
that there are six non-equivalent (2 2 41 ) planes projec-
ted in Fig. 3a. However, the analysis carried out here
did not entail the use of separate symbols to discrimi-
nate between the atoms belonging to different non-
equivalent (2 2 41 ) planes.

Figure 3 (a) (1 1 21 ) projection, and (b) (1 1 0) projection, of atoms in

the f c c crystal.
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To display the structure of the dissociated edge
dislocation core, edge-type and screw-type relative
atomic displacements were determined and shown
separately. The edge-type relative displacement of the
two atoms is represented by a vector centred at the
midpoint of the two atoms, and having the length
proportional to the magnitude of the (1 1 21 ) projection
of the relative displacement vector of the two atoms.
The arrow on the edge-type relative displacement vec-
tor refers to the direction of the edge-type relative
displacement of the atom with a larger value of its y
coordinate. If the y coordinates of the two atoms are
the same, then the arrow refers to the displacement of
the atom with a larger x coordinate.

The screw-type relative displacement is represented
by a vector centred at the midpoint and lying along
the line connecting the two atoms. Its magnitude is
proportional to the relative [1 1 21 ] displacement of the
two atoms and the arrow points to the atoms whose

Figure 4 (a) Edge-type, and (b) screw-type, relative atomic dis-

placements associated with a dissociated a/2[1 1 0] edge disloca-
tion. Fe—Ni—Cr alloy.
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relative displacement is in the positive [1 1 21 ] di-
rection.

Determination of the relative displacements asso-
ciated with an edge dislocation must be done very
carefully because the number of atoms above and
below the slip plane is not the same. In the present
work, the following procedure was used. The relative
differential displacements are determined starting in
the region far away from the dislocation (say, at the
left side of the computational crystal), where the crys-
tal is nearly perfect and hence the relative displace-
ment is negligible, Fig. 4a and b. On moving towards
the dislocation, the magnitude of the relative displace-
ments increases. When the magnitude of the edge-
type relative displacement becomes larger or equal
to b/2"Da/4[11 1 0] D, two [21 2 0] extra halfplanes are
skipped while calculating the displacements of the
atoms above the slip plane relative to the atoms below
the slip plane. Because the screw-type relative dis-
placement vectors lie along the line connecting the
two atoms in question, the procedure described above
can be easily understood with the help of Fig. 4b.

3.2.2. Screw dislocations
To analyse the structure of the dissociated screw dis-
location core, it is again convenient to use an atomic
projection on the plane normal to the dislocation line,
the (1 1 0) plane in this case. A (1 1 0) projection of the
atoms is given in Fig. 3b, where two different circles
are used to distinguish the atoms belonging to two
non-equivalent (2 2 0) planes.

The edge-type relative displacements were defined
in the same way as in the case of a dissociated edge
dislocation. However, the procedure was somewhat
simpler to implement in this case because the number
of atoms below and above the slip plane were the
same. For convenience, the edge-type relative dis-
placements were scaled relative to the magnitude of the
edge component of the Burgers vector of a Shockley
partial, Da/4[11 1 2] D in this case.

The screw-type relative displacements were defined
in the same fashion as in the case of a dissociated edge
dislocation. However, they are scaled in this case so
that when their magnitude is b/2"Da/4[1 1 0] D, the
screw-type relative displacement vector just touches
the two atoms. When the relative displacement ex-
ceeds b/2, due to the crystal periodicity, it is conve-
nient to have the arrow point towards the other atom.

3.3. Dislocation dynamics
The glide of a single, dissociated (edge or screw)
a/2S1 1 0T dislocation due to application of the shear
stress (parallel to the slip plane and in the direction of
the Burgers vector) at different temperatures has been
studied by performing standard molecular dynamics
calculations. The temperature was attained by giving
each atom an initial random velocity chosen from a
Boltzmann distribution. Equipartition of kinetic and
potential energy occurred in &0.1 ps. The temper-
ature was maintained by exponential relaxation at

each time step (2]10~15 s or 2 fs) of the average



squared velocity i.e. temperature to the desired tem-
perature using a time constant of 0.1 ps. This proced-
ure allowed the temperature to be kept within a range
of 3% of the target temperature. The shear stresses, s

xy
for the edge and s

zy
for the screw dislocation, were

introduced by applying the external forces to the
boundary atoms on the free surfaces. The location of
the moving dislocation was monitored using the rela-
tive atomic displacement discussed in Section 3.2.
The calculations were carried out to three stress levels
(10, 30 and 60 MPa) and at three temperatures (10, 50
and 100 K).

4. Results and discussion
While the procedure developed here is quite general
and can be applied to any Fe—Ni—Cr—N f c c alloy, our
calculations were confined to Fe—40 Ni—15 Cr wt%
without and with nitrogen. The metal atom site frac-
tions (y

F%
"0.4538, y

N*
"0.3838 and y

C3
"0.1625) are

the same in the alloys without and with nitrogen. The
reason for choosing these alloys was two-fold: (a) we
are currently conducting the tensile tests on single
crystals of these alloys at low temperatures and plan
ultimately to correlate the experimental data with our
atomistic simulation results, and (b) in our previous
work [14] we carried out a detailed analysis of the
short-range order in the two alloys using Monte-
Carlo simulations, and hope by gathering various
information for the same alloy systems to be able
better to elucidate the role of nitrogen in Fe—Ni—Cr
austenite.

4.1. Fe—40Ni—15Cr alloy without nitrogen
4.1.1. Dislocation core structure
Fig. 4a and b show the equilibrium configuration of
the core of an a/2 [11 1 0] edge dislocation in the Fe—40
Ni—15 Cr alloy at 0 K. The dislocation core spreads
along the (1 1 1) plane creating a stacking fault ribbon
which is bound by two Shockley partial dislocations.
This dislocation dissociation can be represented as
follows

a/2[11 1 0]"a/6[11 2 11 ]#a/6[21 1 1] (11)

The Burgers vector of each of the two Shockley
partials, can be represented as a sum of its edge and
screw components as follows

a/6[11 2 11 ]"a/4[11 1 0]
%
#1/12 [1 1 21 ]

4
(12)

a/6[21 1 1]"a/4[11 1 0]
%
#1/12 [11 11 2]

4
(13)

The two partials thus differ in the character of the
screw component of their Burgers vector. A careful
examination of the screw-type relative displacement
map, Fig. 4b, shows that the Shockley partial on the
left is of the a/6[11 2 11 ] type, while the Shockley partial
on the right is of the a/6[21 1 1] type.

According to the (isotropic) continuum theory, the
width of a stacking fault ribbon, d

SF
, is given as [15]

lb2 2!m 2m

d
SF
"

8pE
&
1!m A1!2!m

cos 2bB (14)
where l is the shear modulus, b the magnitude of
the Burgers vector of either of the two partials, E

&
the

stacking fault energy, m Poisson’s ratio and b the angle
between the line direction of the undissociated dis-
location and its Burgers vector. Using the following
data: l"65 GPa [11], E

&
"80 mJm~2 (present

work), 6"J6/6a, a"0.3574 nm (present work),
m"0.3 and b"90°, we obtained d

SF
"2.26 nm. This

is in excellent agreement with the d
SF
+2.3 nm as seen

in Fig. 4a and b. The value l"0.65 GPa is obtained
as a Voigt average of the shear modulus based on the
single-crystal elastic constants C

11
, C

12
and C

44
com-

puted using the EAM functions presented in Section 2.
The stacking fault energy was computed using the

following procedure. The upper half of the (perfect)
crystal shown in Fig. 2, was shifted (rigidly) by one
Burgers vector of the Shockley partial dislocation, a/6
[1 2 1] and the resulting configuration relaxed by min-
imizing the potential energy of the crystal subject to
the periodic boundary conditions. The magnitude of
the stacking fault energy was then computed by divid-
ing the difference in the energies of the faulted and the
perfect crystal by the area of the stacking fault (twice
the area of the x—z face). The computed value of the
stacking fault energy, 80 mJm~2 is in excellent agree-
ment with its experimental counterpart, 75 mJm~2

[16].
Fig. 5a and b show the equilibrium configuration

of the core of the a/2[1 1 0] screw dislocation in the
Fe—40 Ni—15 Cr alloy at 0 K. The dislocation disso-
ciates along the (1 11 1) plane creating a stacking fault
ribbon which is bound by two Shockley partial dis-
locations. This process can be represented as

a/2[1 1 0]"a/6[1 2 1]#a/6[2 1 11 ] (15)

The Burgers vector of each of the two partials can be
represented by a sum of its edge and screw compo-
nents as follows

a/6[2 1 11 ]"a/4[1 1 0]
4
#a/12[1 11 21 ]

%
(16)

a/6[1 2 1]"a/4[1 1 0]
4
#a/12[11 1 2]

%
(17)

The two partials thus differ in the character of the edge
component of their Burgers vector. A careful exam-
ination of the edge-type relative displacement map,
Fig. 5(b), shows that the Shockley partial on the left is
of the a/6[1 2 1] type and that on the right is of the
a/6[2 1 11 ] type.

Setting b"0 and holding the remaining para-
meters on the right-hand side of Equation 14 at their
previous values, the width of the stacking fault ribbon
in the case of a dissociated screw dislocation was
found to be &1.08 nm. Again, this is in excellent
agreement with the observed width of the stacking
fault ribbon &1.3 nm, in Fig. 5a and b.

The dislocations core structures in Fe—40Ni—15Cr
shown in Figs 4a, b and 5a, b are quite common to
non-ordered f c c metals as observed in a number of
previous studies (e.g. [17]). The core structure is prin-
cipally governed by crystallography (the slip plane
and the slip direction) and by the magnitude of the
stacking fault energy, with the latter being the only

(interatomic) potential controlled parameter. While
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Figure 5 (a) Screw-type, and (b) edge-type, relative atomic dis-
placements associated with a dissociated a/2[1 1 0] screw disloca-
tion. Fe—Ni—Cr alloy.

the results shown in Figs 4a, b and 5a, b could have
been obtained within the framework of continuum
theory of dislocations, it was critical to reproduce
them using the atomistic computer simulations in
order to verify the validity of the interatomic potential
functions used in the present simulations.

4.1.2. Dislocation dynamics
Figs 6 and 7 show, respectively, the position of an edge
and a screw a/2S1 1 0T dislocation as a function of
time in the molecular dynamics run at the shear stress
levels of 10, 30 and 60 MPa and at three temperatures:
10, 50, and 100 K. The results indicate that from the
start, the dislocation begins to accelerate and ulti-
mately attains a constant velocity whose magnitude
depends on stress and temperature.

According to continuum theory, the dislocation dy-

namics can be described by the following differential
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Figure 6 Position of the dissociated a/2[1 1 0] edge dislocation as
a function of time. Fe—Ni—Cr alloy. 10 K: (—— ) 15 MPa, ( — — — )
30 MPa, ( · · · ) 60 MPa. 50 K: ( — · — ) 15 MPa, (- - -) 30 MPa, (- - - - - -)
60 MPa. 100 K: ( — —— ) 15 MPa, (— -—) 30 MPa, (· ·· · ·· · ·· ) 60 MPa.

Figure 7 Position of the dissociated a/2 [1 1 0] screw dislocation as
a function of time. Fe—Ni—Cr alloy. For key, see Fig. 6.

equation [18]

d

dt

mm
[1!(m/c)2]1@2

"(s!s
0
)b!a

3k¹

10b2

m/c

[1!(m/c)2]1@2

(18)

where m and m are, respectively, the dislocation velo-
city and the dislocation mass per unit length, c is a
limiting velocity, s is the applied shear stress, s

0
the

lattice frictional stress, b the Burgers vector, a a di-
mensionless constant, and k and ¹ have their usual
meanings. The right-hand side in the above equation
represents the net driving force, i.e. the difference be-
tween the applied driving force and the resisting (lat-
tice friction and phonon drag) forces to the dislocation
motion. To determine four parameters (c, m, a and s

0
)

in the above equation, Equation 18 was first solved
analytically for the dislocation velocity and then
numerically for the dislocation position as a function
of time. The least-squares fitting was next applied to
the data shown in Figs 6 and 7 to determine the four
parameters. The results of this fitting procedure are
given in Table I.

The dislocation mass and frictional stress shown in
Table I have apparently the same values for the edge

and screw dislocations. In addition, their magnitudes



TABLE I Dislocation dynamics parameters in Fe—Ni—Cr

Parameter Edge Screw
dislocations dislocations

c (nm ps~1) 1.4 0.9
m (atoms/Burgers’ distance) 0.21 0.22
a 1.2 1.8
s
0

(MPa) 3.1 3.1

appear quite reasonable. For instance, in f c c metallic
materials, the critical shear stress associated with the
onset of plastic deformation, s

#
, is of the order of 10~5

to 10~4 l. Thus, for l"65 GPa, s
#
"0.65—6.5 MPa.

The magnitude of the frictional stress, s
0
"3.1 MPa,

obtained in the present work falls within this range.
The scaling factor for the drag term, a, on the other
hand, is significantly larger for the screw than for the
edge dislocations. As a consequence, the limiting velo-
city, c, i.e. the terminal dislocation velocity at very
high stress levels, s<s

0
, is lower for the screw than for

the edge dislocations. In fact, our results show that at
any level of applied stress s's

0
, the terminal disloca-

tion velocity for the screw dislocations is lower than
that for the edge dislocations. This suggests that the
dissociated a/2S1 1 0T edge dislocations are more mo-
bile than their dissociated screw counterparts. This
finding is consistent with the results shown in Figs 4
and 5, which indicate that the core of the edge disloca-
tions is spread to a greater extent along the slip plane
when compared to that of the screw dislocations. As
a result, the motion of the edge dislocations is asso-
ciated with smaller displacements of the atoms in their
core and, hence, encounters less resistance from the
lattice.

The results shown in Figs 6 and 7 indicates that the
mobility of dislocations decreases as temperature is
increased. In fact, we observed that at temperatures in
excess of 400 K and at stress levels up to 60 MPa
(results not shown for brevity), no large-scale motion
of the dislocation takes place during several simula-
tion runs of 200 ps. This finding confirms what is
already implied by Equation (14), that the motion of
dislocations is controlled by their interaction with
(thermally excited) phonons. That is, at lower temper-
atures (up to 100 K), the net driving force (the differ-
ence between the applied and the resisting forces) on
the dislocation is positive and the dislocation dynam-
ics is described by Equation (14). At higher temper-
atures, on the other hand, thermally excited phonons
appear to give rise to an additional ‘‘friction-like’’
term. As a result, the net driving force on the disloca-
tion becomes negative and the forward motion of the
dislocation requires thermal activation. Under such
circumstances, dislocation motion is expected to be
controlled by kink formation over the primary Peierls
barrier and (lateral) kink propagation across the sec-
ondary Peierls barrier. There are two reasons why
such dislocation motion was not observed in our
simulations at 400 K: (a) the average dislocation velo-
city in the thermally activated regime is too small for

a dislocation to advance one periodic distance during
the time of 200 ps, and (b) the periodic boundary
conditions used in our simulations enhance the barrier
to the process of kink formation by limiting the
maximum length (hence increasing the curvature) of
the kink.

4.2. Fe—40 Ni—15 Cr alloy with nitrogen
As demonstrated in our previous work [7], the details
of the way nitrogen affects the core structure of an
a/2S1 1 0T screw dislocation vary with the relative
position of the nitrogen atom and the dislocation.
However, a particular feature, that is spreading of the
dislocation core on to two non-parallel M1 1 1N planes
containing the dislocation line, was found to be com-
mon to all the configurations. For an a/2S1 1 2T edge
dislocation, we found that the effect of nitrogen on the
structure of the dislocation core is much less sensitive
to the relative position of the nitrogen atoms and the
dislocation. Therefore, in the present paper we com-
pare the effect of nitrogen on the core structure and
mobility of a/2S1 1 0T edge and screw dislocations for
a fixed relative position of the nitrogen atoms and the
dislocation. Specifically, a row of nitrogen atoms was
placed on the slip plane just ahead of the leading
Shockley partial dislocation both for the case of a dis-
sociated a/2 [11 1 0] edge dislocation and a dissociated
a/2[1 1 0] screw dislocation.

4.2.1. Dislocation core structure
The effect of nitrogen atoms, placed on the slip plane
just ahead of the leading Shockley partial dislocation,
on the core structure of the dissociated a/2[11 1 0] edge
dislocation is shown in Fig. 8a and b. Nitrogen causes
minor lattice distortions, but does not change the
structure of the dislocation core significantly. In par-
ticular, the dislocation remains spread on the slip
plane. Similar results were obtained when a row of
nitrogen atoms was placed above or below the slip
plane, and hence will not be shown here.

The effect of nitrogen atoms, placed on the slip
plane just ahead of the leading Shockley partial dis-
location, on the core structure of the dissociated
a/2[1 1 0] screw dislocation is shown in Fig. 9a and b.
Nitrogen causes spreading of the dislocation core
on to two close packed planes, (1 11 1) and (11 1 1). As
discussed in our previous work [7], this dislocation
process can be described as

a/2[1 1 0]"a/6[1 2 1]#a/6[1 2 11 ]#a/6[1 11 0] (19)

The dislocation with the Burgers vector a/6[1 11 0] is of
the edge type and its slip plane is (0 0 1). Because (0 0 1)
is not a close-packed plane, glide of the a/6[1 11 0]
dislocation requires a higher stress, and hence the
entire dissociated a/2[1 1 0] screw dislocation is less
mobile.

One might argue that modelling the interaction of
one infinite row of nitrogen atoms with a parallel
dislocation (a fairly improbable configuration in the
real material) may furnish little useful information
about the phenomenon of nitrogen strengthening.

Owing to a low solubility of nitrogen in austenite, it
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Figure 8 (a) Edge-type, and (b) screw-type, relative atomic dis-
placements associated with a dissociated a/2[11 1 0] edge disloca-
tion. Fe—Ni—Cr—N alloy.

appears that modelling the interaction of a single
nitrogen atom with the dislocation may provide more
insight into the problem. However, such three-dimen-
sional modelling would require the use of a prohibi-
tively large computational crystal and could not be
carried out. We found that spreading of the screw
dislocation core on to two non-parallel close packed
planes takes place (although the extent is somewhat
lower) not only when the nitrogen atoms are placed
into every interstitial site but also when the nitrogen is
put into every other interstitial site along the infinite
row. This finding suggests that the interaction of the
dislocation with isolated nitrogen atoms can locally
change the dislocation core structure. The segments of
the screw dislocation with the non-planar core struc-
ture are expected to have lower mobility than the rest
of the dislocation line and are expected to act as

‘‘pinned’’ segments. As a consequence, the mobility of
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Figure 9 (a) Screw-type, and (b) edge-type, relative atomic dis-
placements associated with a dissociated a/2[1 1 0] screw disloca-
tion. Fe—Ni—Cr—N alloy.

the screw dislocations is expected to be lower than
that of the edge dislocations. This, in turn, can be used
to explain why there are screw dislocations predomi-
nantly found in the Fe—Ni—Cr austenite containing
nitrogen [19].

The effect of nitrogen on the dynamics of the edge
dislocations (results not shown for brevity) was found
to be very sensitive to the relative position of nitrogen
atoms and the dislocation. By applying the fitting
procedure described in the previous section, however,
it was found that only the frictional stress, s

0
, was

increased from 3.1 to &4.0 MPa while the other dy-
namics parameters, c, m and a remained closed to
their respective counterparts in Fe—Ni—Cr austenite,
Table I.

Owing to the complex core structure which under-
goes large changes during dislocation motion, it was

very difficult to monitor the progress of the screw



dislocation motion. However, the velocity of the screw
dislocations at a given stress and temperature was
estimated to be typically lower by about one order of
magnitude when compared to that for the edge dislo-
cations in Fe—Ni—Cr—N austenite. Again, it should be
noted that due to the use of periodic boundary condi-
tions, the results obtained in the present work pertain
to relative mobility of the straight, edge and screw,
dislocations. The results suggest that in the high-
velocity drag-controlled regime, because of the non-
planar character of their core structure, the straight
screw dislocations are less mobile than their edge
counterparts. On the other hand, under more com-
mon plastic deformation conditions, the average dislo-
cation velocity is several orders of magnitude lower
and controlled by thermal activation of the kink
formation and the kink propagation processes. As
discussed earlier, atomistic simulation of the latter
processes is not feasible at the present time. Then, one
must ask whether our results pertaining to the core
structure and the hopping motion of straight disloca-
tions, can tell us anything about the mobility of dislo-
cations via the kink mechanism. We believe that the
answer is positive and that the ‘‘pinned’’ segments
formed along the screw dislocations interfere with
both the formation and the propagation of the kinks,
making these dislocations less mobile. This can be
explained by the following: because of the formation
of the pinned segments, the length of the free disloca-
tion segments, the segments which bow out under
applied stress and participate in the kink formation
process, is reduced in the case of the screw disloca-
tions. Because, at a constant stress, the maximum
forward excursion of the bowed out segment scales
roughly with the segment length, such excursion is
smaller and consequently the probability for kink
formation is lower for the screw dislocations. Further-
more, once the kinks are nucleated, their lateral
motion along the dislocation line is hampered by the
presence of pinned segments, giving rise to their lower
velocity. Because the velocity of the dislocations in the
thermally activated regime scales with the product of
the probability for kink formation and the kink velo-
city and the latter two are expected to be smaller in the
case of the screw dislocations, one should expect lower
mobility of the screw dislocations in Fe—Ni—Cr—N.
This conclusion is consistent with the experimental
findings (e.g. [19]) that the dislocations are predomi-
nantly of the screw character in these alloys.

It should be noted that the interstitial strengthening
of f c c alloys is often attributed to the (dilational) strain
interaction between the dislocations and the inter-
stitials (e.g. [20]). Accordingly, the first-order strain
interaction between an interstitial and the screw dislo-
cation is zero and only the edge dislocations contrib-
ute to interstitial strengthening. Our findings reported
here, however, suggest that the strain interaction of
nitrogen atoms with the edge dislocation may not
represent the dominant part of interstitial strengthen-
ing. This is supported by X-ray diffraction mea-
surements [1] which show that nitrogen-induced
dilational strains in Fe—Ni—Cr austenite are relatively

small and symmetric.
5. Conclusion
EAM-based atomic simulations show that both the
edge and the screw a/2S11 0T dislocations in
Fe—Ni—Cr austenite have their core spread on the
M1 1 1N slip plane with the stacking fault ribbon widths
comparable to those predicted by continuum theory.
The analysis of dislocation dynamics shows that, at
least in the phonon drag regime, the screw dislocations
are somewhat less mobile than the edge dislocations.

The addition of nitrogen into Fe—Ni—Cr austenite
causes minor changes in the core structure and mobil-
ity of the edge dislocation, primarily increasing the
frictional stress. In sharp contrast, the interaction of
nitrogen atoms with the screw dislocations causes the
dislocation core to spread on to two or more planes,
and in turn, imparts lower mobility to these dislocations.
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